Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Gen Virol ; 102(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310272

RESUMO

Cassava mosaic disease (CMD) represents a serious threat to cassava, a major root crop for more than 300 million Africans. CMD is caused by single-stranded DNA begomoviruses that evolve rapidly, making it challenging to develop durable disease resistance. In addition to the evolutionary forces of mutation, recombination and reassortment, factors such as climate, agriculture practices and the presence of DNA satellites may impact viral diversity. To gain insight into the factors that alter and shape viral diversity in planta, we used high-throughput sequencing to characterize the accumulation of nucleotide diversity after inoculation of infectious clones corresponding to African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) in the susceptible cassava landrace Kibandameno. We found that vegetative propagation had a significant effect on viral nucleotide diversity, while temperature and a satellite DNA did not have measurable impacts in our study. EACMCV diversity increased linearly with the number of vegetative propagation passages, while ACMV diversity increased for a time and then decreased in later passages. We observed a substitution bias toward C→T and G→A for mutations in the viral genomes consistent with field isolates. Non-coding regions excluding the promoter regions of genes showed the highest levels of nucleotide diversity for each genome component. Changes in the 5' intergenic region of DNA-A resembled the sequence of the cognate DNA-B sequence. The majority of nucleotide changes in coding regions were non-synonymous, most with predicted deleterious effects on protein structure, indicative of relaxed selection pressure over six vegetative passages. Overall, these results underscore the importance of knowing how cropping practices affect viral evolution and disease progression.


Assuntos
Begomovirus/genética , Variação Genética , Manihot/crescimento & desenvolvimento , Manihot/virologia , Doenças das Plantas/virologia , Sequência de Bases , Begomovirus/fisiologia , Códon , DNA Intergênico , DNA Viral/genética , Evolução Molecular , Genoma Viral , Mutação , Polimorfismo de Nucleotídeo Único , Vírus Satélites/genética , Vírus Satélites/fisiologia , Deleção de Sequência , Temperatura , Proteínas Virais/genética
2.
Mol Biol Rep ; 48(3): 2143-2152, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33635470

RESUMO

Geminiviridae comprises the largest family of plant viruses which causes severe crop losses in India. The highest pungency chilli Bhut-Jolokia or ghost pepper (Capsicum chinense Jaqc.) hails from North-East region of India and is used in many dishes to add flavors and also for its medicinal value. However, this chilli variety is also affected by viruses leading to crop and economic losses. The present study reports the identification of begomoviruses in the infected chilli Bhut-Jolokia leaf samples collected from eight different places of North-East region (Manipur) of India. The infected leaf samples were screened for the presence of viral genome by rolling circle amplification (RCA) followed by PCR using degenerate primer pairs. The subsequent analyses using restriction fragment length polymorphism and sequencing revealed the presence of Cotton leaf curl Multan virus (CLCuMuV), and Tomato leaf curl Patna betasatellite (ToLCPaB). The findings focus on the phylogenetic relatedness, probable recombinational hot-spots and evolutionary divergence of the viral DNA sequences with the current reported begomoviral genome. To the best of our knowledge, this is the first report showing the presence of CLCuMuV, and associated non-cognate ToLCPaB with leaf curl disease of Bhut-Jolokia chillies. The study reveals potential recombination sites on both viral genome and betsatellite which, during the course of evolution, may have aided the virus to progress and successfully establish infection in chilli plants. Taken together, our results suggest a possible spread of CLCuMuV to the hitherto non-host crop in the North-East region of India.


Assuntos
Begomovirus/fisiologia , Capsicum/virologia , Doenças das Plantas/virologia , Vírus Satélites/fisiologia , Composição de Bases/genética , Begomovirus/genética , Begomovirus/isolamento & purificação , DNA Satélite/genética , DNA Viral/genética , Evolução Molecular , Genoma Viral , Geografia , Índia , Filogenia , Recombinação Genética/genética
3.
Virus Genes ; 57(1): 1-22, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33226576

RESUMO

Plant viral satellites fall under the category of subviral agents. Their genomes are composed of small RNA or DNA molecules a few hundred nucleotides in length and contain an assortment of highly complex and overlapping functions. Each lacks the ability to either replicate or undergo encapsidation or both in the absence of a helper virus (HV). As the number of known satellites increases steadily, our knowledge regarding their sequence conservation strategies, means of replication and specific interactions with host and helper viruses is improving. This review demonstrates that the molecular interactions of these satellites are unique and highly complex, largely influenced by the highly specific host plants and helper viruses that they associate with. Circularized forms of single-stranded RNA are of particular interest, as they have recently been found to play a variety of novel cellular functions. Linear forms of satRNA are also of great significance as they may complement the helper virus genome in exacerbating symptoms, or in certain instances, actively compete against it, thus reducing symptom severity. This review serves to describe the current literature with respect to these molecular mechanisms in detail as well as to discuss recent insights into this emerging field in terms of evolution, classification and symptom development. The review concludes with a discussion of future steps in plant viral satellite research and development.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas , Vírus Satélites , DNA Satélite , DNA Viral , Vírus Auxiliares/fisiologia , Interações entre Hospedeiro e Microrganismos , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , Vírus de Plantas/fisiologia , RNA Satélite , RNA Viral , Vírus Satélites/genética , Vírus Satélites/patogenicidade , Vírus Satélites/fisiologia , Replicação Viral
4.
Arch Virol ; 165(9): 2099-2103, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32556597

RESUMO

Geminiviruses cause considerable yield loss in several crop plants worldwide. In 2016, several hollyhock plants displaying yellow mosaic and leaf curling symptoms were noticed in a nursery of Jawaharlal Nehru University, New Delhi, India. Analysis of the collected samples indicated an association of monopartite and bipartite begomoviruses with satellites. Three begomoviruses (including a member of a new begomovirus species), two alphasatellites, and a betasatellite were isolated from yellow-mosaic-disease-affected plants. Similarly, a begomovirus, two alphasatellites, and a betasatellite were found to be associated with leaf curl disease of hollyhock. These begomoviruses and satellites were found to be recombinants. By harboring diverse begomoviruses and satellite DNAs, hollyhock may serve as a potential source of virus inoculum.


Assuntos
Begomovirus/isolamento & purificação , Malvaceae/virologia , Doenças das Plantas/virologia , Vírus Satélites/isolamento & purificação , Begomovirus/classificação , Begomovirus/genética , Begomovirus/fisiologia , Índia , Filogenia , Vírus Satélites/classificação , Vírus Satélites/genética , Vírus Satélites/fisiologia
5.
Virus Genes ; 56(1): 16-26, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31773493

RESUMO

Betasatellites are a group of circular, single-stranded DNA molecules that are frequently found to be associated with monopartite begomoviruses of the family Geminiviridae. Betasatellites require their helper viruses for replication, movement, and encapsidation and they are often essential for induction of typical disease symptoms. The ßC1 protein encoded by betasatellites is multifunctional that participates in diverse cellular events. It interferes with several cellular processes like normal development, chloroplasts, and innate immune system of plants. Recent research has indicated ßC1 protein interaction with cellular proteins and its involvement in modulation of the host's cell cycle and symptom determination. This article focuses on the functional mechanisms of ßC1 and its interactions with other viral and host proteins.


Assuntos
Begomovirus/fisiologia , Doenças das Plantas/virologia , Vírus Satélites/fisiologia , Begomovirus/classificação , Begomovirus/genética , Begomovirus/isolamento & purificação , DNA Satélite/genética , DNA Satélite/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Vírus Satélites/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
6.
Virol J ; 16(1): 130, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699111

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are a class of 21-24 nucleotide endogenous non-coding small RNAs that play important roles in plant development and defense responses to biotic and abiotic stresses. Tobacco curly shoot virus (TbCSV) is a monopartite begomovirus, cause leaf curling and plant stunting symptoms in many Solanaceae plants. The betasatellite of TbCSV (TbCSB) induces more severe symptoms and enhances virus accumulation when co-infect the plants with TbCSV. METHODS: In this study, miRNAs regulated by TbCSV and TbCSB co-infection in Nicotiana benthamiana were characterized using high-throughput sequencing technology. RESULTS: Small RNA sequencing analysis revealed that a total of 13 known miRNAs and 42 novel miRNAs were differentially expressed in TbCSV and TbCSB co-infected N. benthamiana plants. Several potential miRNA-targeted genes were identified through data mining and were involved in both catalytic and metabolic processes, in addition to plant defense mechanisms against virus infections according to Gene Ontology (GO) analyses. In addition, the expressions of several differentially expressed miRNAs and their miRNA-targeted gene were validated through quantitative real time polymerase chain reaction (qRT-PCR) approach. CONCLUSIONS: A large number of miRNAs are identified, and their target genes, functional annotations also have been explored. Our results provide the information on N. benthamiana miRNAs and would be useful to further understand miRNA regulatory mechanisms after TbCSV and TbCSB co-infection.


Assuntos
Begomovirus/fisiologia , MicroRNAs/genética , /virologia , RNA de Plantas/genética , Vírus Satélites/fisiologia , Coinfecção , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , MicroRNAs/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/virologia , RNA de Plantas/metabolismo
7.
Mol Plant Microbe Interact ; 32(4): 479-490, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30379112

RESUMO

Panicum mosaic virus (PMV) (genus Panicovirus, family Tombusviridae) and its molecular parasite, Satellite panicum mosaic virus (SPMV), synergistically interact in coinfected proso and pearl millet (Panicum miliaceum L.) plants resulting in a severe symptom phenotype. In this study, we examined synergistic interactions between the isolates of PMV and SPMV by using PMV-NE, PMV85, SPMV-KS, and SPMV-Type as interacting partner viruses in different combinations. Coinfection of proso millet plants by PMV-NE and SPMV-KS elicited severe mosaic, chlorosis, stunting, and eventual plant death compared with moderate mosaic, chlorotic streaks, and stunting by PMV85 and SPMV-Type. In reciprocal combinations, coinfection of proso millet by either isolate of PMV with SPMV-KS but not with SPMV-Type elicited severe disease synergism, suggesting that SPMV-KS was the main contributor for efficient synergistic interaction with PMV isolates. Coinfection of proso millet plants by either isolate of PMV and SPMV-KS or SPMV-Type caused increased accumulation of coat protein (CP) and genomic RNA copies of PMV, compared with infections by individual PMV isolates. Additionally, CP and genomic RNA copies of SPMV-KS accumulated at substantially higher levels, compared with SMPV-Type in coinfected proso millet plants with either isolate of PMV. Hybrid viruses between SPMV-KS and SPMV-Type revealed that SPMV isolates harboring a CP fragment with four differing amino acids at positions 18, 35, 59, and 98 were responsible for differential synergistic interactions with PMV in proso millet plants. Mutation of amino acid residues at these positions in different combinations in SPMV-KS, similar to those as in SPMV-Type or vice-versa, revealed that A35 and R98 in SPMV-KS CP play critical roles in enhanced synergistic interactions with PMV isolates. Taken together, these data suggest that the two distinct amino acids at positions 35 and 98 in the CP of SPMV-KS and SPMV-Type are involved in the differential synergistic interactions with the helper viruses.


Assuntos
Aminoácidos , Proteínas do Capsídeo , Panicum , Vírus Satélites , Tombusviridae , Aminoácidos/química , Aminoácidos/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Panicum/virologia , Vírus Satélites/genética , Vírus Satélites/fisiologia , Tombusviridae/fisiologia
8.
Viruses ; 10(10)2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332789

RESUMO

The Saccharomycetaceae yeast family recently became recognized for expanding of the repertoire of different dsRNA-based viruses, highlighting the need for understanding of their cross-dependence. We isolated the Saccharomyces paradoxus AML-15-66 killer strain from spontaneous fermentation of serviceberries and identified helper and satellite viruses of the family Totiviridae, which are responsible for the killing phenotype. The corresponding full dsRNA genomes of viruses have been cloned and sequenced. Sequence analysis of SpV-LA-66 identified it to be most similar to S. paradoxus LA-28 type viruses, while SpV-M66 was mostly similar to the SpV-M21 virus. Sequence and functional analysis revealed significant differences between the K66 and the K28 toxins. The structural organization of the K66 protein resembled those of the K1/K2 type toxins. The AML-15-66 strain possesses the most expressed killing property towards the K28 toxin-producing strain. A genetic screen performed on S. cerevisiae YKO library strains revealed 125 gene products important for the functioning of the S. paradoxus K66 toxin, with 85% of the discovered modulators shared with S. cerevisiae K2 or K1 toxins. Investigation of the K66 protein binding to cells and different polysaccharides implies the ß-1,6 glucans to be the primary receptors of S. paradoxus K66 toxin. For the first time, we demonstrated the coherent habitation of different types of helper and satellite viruses in a wild-type S. paradoxus strain.


Assuntos
Micovírus/isolamento & purificação , Vírus Auxiliares/isolamento & purificação , Saccharomyces/virologia , Vírus Satélites/isolamento & purificação , Totiviridae/isolamento & purificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micovírus/classificação , Micovírus/genética , Micovírus/fisiologia , Genoma Viral , Vírus Auxiliares/classificação , Vírus Auxiliares/genética , Vírus Auxiliares/fisiologia , Filogenia , Saccharomyces/genética , Saccharomyces/metabolismo , Vírus Satélites/classificação , Vírus Satélites/genética , Vírus Satélites/fisiologia , Totiviridae/classificação , Totiviridae/genética , Totiviridae/fisiologia
9.
Virus Res ; 253: 124-134, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29908896

RESUMO

Begomoviruses (family Geminiviridae) are frequently associated with alphasatellites and betasatellites in the Old World. Tomato yellow leaf curl virus, one of the most damaging begomovirus species worldwide, was recently found associated with betasatellites in the eastern coast of the Mediterranean Sea, and in the Middle East region. Tomato yellow leaf curl virus (TYLCV)/betasatellite associations were shown to increase TYLCV virulence in experimental conditions. The sustainability of TYLCV/satellite associations in tomato was assessed here by estimating accumulation levels of satellites in comparison to TYLCV, vector transmission efficiency, and by testing how far the popular Ty-1 resistance gene used in most TYLCV-resistant tomato cultivars in the Mediterranean Basin is effective against betasatellites. Three satellites previously isolated from okra in Burkina Faso-of the species Cotton leaf curl Gezira betasatellite, Cotton leaf curl Gezira alphasatellite and Okra leaf curl Burkina Faso alphasatellite-were shown to accumulate at levels similar to, or higher than, the helper virus TYLCV-Mld in tomato plants from 32 to 150 days post inoculation (dpi). Cotton leaf curl Gezira betasatellite (CLCuGB) reduced TYLCV-Mld accumulation whereas alphasatellites did not. Transmission tests were performed with B. tabaci from plants infected with TYLCV-Mld/CLCuGB- or TYLCV-Mld/Okra leaf curl Burkina Faso alphasatellite. At 32 dpi, both satellites were transmitted to more than 50% of TYLCV-infected test plants. Betasatellite transmission, tested further with 150 dpi source plants was successful in more than 30% of TYLCV-infected test plants. Ty-1 resistant tomato plants co-infected with TYLCV (-Mld or -IL) and CLCuGB exhibited mild leaf curling and mosaic symptoms at the early stage of infection associated with a positive effect on TYLCV-IL accumulation, while resistant plants infected with TYLCV only, were asymptomatic. Together with previous experimental studies, these results further emphasize the potential risk of betasatellites to tomato cultivation, including with Ty-1 resistant cultivars.


Assuntos
Begomovirus/fisiologia , Doenças das Plantas/virologia , Retroelementos , Vírus Satélites/fisiologia , Solanum lycopersicum/virologia , Abelmoschus/virologia , Begomovirus/genética , Resistência à Doença , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Vírus Satélites/genética
10.
Virology ; 514: 182-191, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29197268

RESUMO

Panicum mosaic virus (PMV) is a helper RNA virus for satellite RNAs (satRNAs) and a satellite virus (SPMV). Here, we describe modifications that occur at the 3'-end of a satRNA of PMV, satS. Co-infections of PMV+satS result in attenuation of the disease symptoms induced by PMV alone in Brachypodium distachyon and proso millet. The 375 nt satS acquires ~100-200 nts from the 3'-end of PMV during infection and is associated with decreased abundance of the PMV RNA and capsid protein in millet. PMV-satS chimera RNAs were isolated from native infections of St. Augustinegrass and switchgrass. Phylogenetic analyses revealed that the chimeric RNAs clustered according to the host species from which they were isolated. Additionally, the chimera satRNAs acquired non-viral "linker" sequences in a host-specific manner. These results highlight the dynamic regulation of viral pathogenicity by satellites, and the selective host-dependent, sequence-based pressures for driving satRNA generation and genome compositions.


Assuntos
Vírus Auxiliares , Especificidade de Hospedeiro , Doenças das Plantas , RNA Satélite , Vírus Satélites , Tombusviridae , Brachypodium/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Genoma Viral , Vírus Auxiliares/genética , Vírus Auxiliares/fisiologia , Panicum/virologia , Filogenia , Doenças das Plantas/virologia , Poaceae/virologia , Recombinação Genética , RNA Satélite/genética , RNA Satélite/metabolismo , Vírus Satélites/genética , Vírus Satélites/fisiologia , Tombusviridae/genética , Tombusviridae/fisiologia
11.
Viruses ; 11(1)2018 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-30602655

RESUMO

Hepatitis delta virus (HDV) is unique among animal viruses. HDV is a satellite virus of the hepatitis B virus (HBV), however it shares no sequence similarity with its helper virus and replicates independently in infected cells. HDV is the smallest human pathogenic RNA virus and shares numerous characteristics with viroids. Like viroids, HDV has a circular RNA genome which adopts a rod-like secondary structure, possesses ribozyme domains, replicates in the nucleus of infected cells by redirecting host DNA-dependent RNA polymerases (RNAP), and relies heavily on host proteins for its replication due to its small size and limited protein coding capacity. These similarities suggest an evolutionary relationship between HDV and viroids, and information on HDV could allow a better understanding of viroids and might globally help understanding the pathogenesis and molecular biology of these subviral RNAs. In this review, we discuss the host involvement in HDV replication and its implication for HDV pathogenesis.


Assuntos
Vírus Delta da Hepatite/genética , Vírus Delta da Hepatite/patogenicidade , Interações Hospedeiro-Patógeno , Vírus Satélites/fisiologia , Replicação Viral , Replicação do DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Genoma Viral , Vírus da Hepatite B/fisiologia , Vírus Delta da Hepatite/fisiologia , Humanos , RNA/genética , RNA Circular , RNA Viral/genética , Vírus Satélites/genética , Viroides/genética
12.
Mol Plant Microbe Interact ; 29(3): 181-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26551994

RESUMO

Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.


Assuntos
Satélite do Vírus do Mosaico do Pepino/genética , Cucumovirus/genética , RNA Satélite , Vírus Satélites/fisiologia , Regulação Viral da Expressão Gênica/fisiologia
15.
Virol J ; 12: 38, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25890080

RESUMO

BACKGROUND: Tomato yellow leaf curl virus (TYLCV), a monopartite begomovirus (family Geminiviridae) is responsible for heavy yield losses for tomato production around the globe. In Oman at least five distinct begomoviruses cause disease in tomato, including TYLCV. Unusually, TYLCV infections in Oman are sometimes associated with a betasatellite (Tomato leaf curl betasatellite [ToLCB]; a symptom modulating satellite). RNA interference (RNAi) can be used to develop resistance against begomoviruses at either the transcriptional or post-transcriptional levels. RESULTS: A hairpin RNAi (hpRNAi) construct to express double-stranded RNA homologous to sequences of the intergenic region, coat protein gene, V2 gene and replication-associated gene of Tomato yellow leaf curl virus-Oman (TYLCV-OM) was produced. Initially, transient expression of the hpRNAi construct at the site of virus inoculation was shown to reduce the number of plants developing symptoms when inoculated with either TYLCV-OM or TYLCV-OM with ToLCB-OM to Nicotiana benthamiana or tomato. Solanum lycopersicum L. cv. Pusa Ruby was transformed with the hpRNAi construct and nine confirmed transgenic lines were obtained and challenged with TYLCV-OM and ToLCB-OM by Agrobacterium-mediated inoculation. For all but one line, for which all plants remained symptomless, inoculation with TYLCV-OM led to a proportion (≤25%) of tomato plants developing symptoms of infection. For inoculation with TYLCV-OM and ToLCB-OM all lines showed a proportion of plants (≤45%) symptomatic. However, for all infected transgenic plants the symptoms were milder and virus titre in plants was lower than in infected non-transgenic tomato plants. CONCLUSIONS: These results show that RNAi can be used to develop resistance against geminiviruses in tomato. The resistance in this case is not immunity but does reduce the severity of infections and virus titer. Also, the betasatellite may compromise resistance, increasing the proportion of plants which ultimately show symptoms.


Assuntos
Begomovirus/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/virologia , Interferência de RNA , Vírus Satélites/genética , Solanum lycopersicum/virologia , Begomovirus/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Omã , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Vírus Satélites/fisiologia
16.
Biotechnol J ; 10(5): 681-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25728309

RESUMO

Defective interfering particles (DIPs) have been found for many important viral pathogens and it is believed that most viruses generate DIPs. This article reviews the current knowledge of the generation and amplification of DIPs, which possess deletions in the viral genome but retain the ability to replicate in the presence of a complete helper virus. In addition, mechanisms are discussed by which DIPs interfere with the replication of their helper virus leading to the production of mainly progeny DIPs by coinfected cells. Even though DIPs cannot replicate on their own, they are biologically active and it is well known that they have a huge impact on virus replication, evolution, and pathogenesis. Moreover, defective genomes are potent inducers of the innate immune response. Yet, little attention has been paid to DIPs in recent years and their impact on biotechnological products such as vaccines and viral vectors remains elusive in most cases. With a focus on influenza virus, this review demonstrates that DIPs are important for basic research on viruses and for the production of viral vaccines and vectors. Reducing the generation and/or amplification of DIPs ensures reproducible results as well as high yields and consistent product quality in virus production.


Assuntos
Vírus Auxiliares/fisiologia , Vírus Satélites/fisiologia , Animais , Biotecnologia/métodos , Vetores Genéticos/fisiologia , Humanos , Vacinas Virais , Replicação Viral
17.
Mol Plant Microbe Interact ; 27(11): 1277-90, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25296115

RESUMO

Viral diseases cause significant losses in global agricultural production, yet little is known about grass antiviral defense mechanisms. We previously reported on host immune responses triggered by Panicum mosaic virus (PMV) and its satellite virus (SPMV) in the model C3 grass Brachypodium distachyon. To aid comparative analyses of C3 and C4 grass antiviral defenses, here, we establish B. distachyon and Setaria viridis (a C4 grass) as compatible hosts for seven grass-infecting viruses, including PMV and SPMV, Brome mosaic virus, Barley stripe mosaic virus, Maize mild mottle virus, Sorghum yellow banding virus, Wheat streak mosaic virus (WSMV), and Foxtail mosaic virus (FoMV). Etiological and molecular characterization of the fourteen grass-virus pathosystems showed evidence for conserved crosstalk among salicylic acid (SA), jasmonic acid, and ethylene pathways in B. distachyon and S. viridis. Strikingly, expression of PHYTOALEXIN DEFICIENT4, an upstream modulator of SA signaling, was consistently suppressed during most virus infections in B. distachyon and S. viridis. Hierarchical clustering analyses further identified unique antiviral responses triggered by two morphologically similar viruses, FoMV and WSMV, and uncovered other host-dependent effects. Together, the results of this study establish B. distachyon and S. viridis as models for the analysis of plant-virus interactions and provide the first framework for conserved and unique features of C3 and C4 grass antiviral defenses.


Assuntos
Brachypodium/imunologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Vírus de Plantas/fisiologia , Setaria (Planta)/imunologia , Brachypodium/virologia , Análise por Conglomerados , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Oxilipinas/metabolismo , Filogenia , Doenças das Plantas/virologia , Ácido Salicílico/metabolismo , Vírus Satélites/fisiologia , Setaria (Planta)/virologia , Transdução de Sinais , Especificidade da Espécie
18.
Arch Virol ; 159(11): 3145-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25008895

RESUMO

Begomovirus isolates ToF3B2 and ToF3B17 and betasatellite isolate SatBToF3 were obtained from the same infected tomato plant showing begomovirus disease symptoms in Fontem, Cameroon. The full-length nucleotide sequences of ToF3B2, ToF3B17 and SatBToF3 were cloned and sequenced and were determined to be 2,797 nt, 2,794 and 1,373 nt long respectively. When compared with other begomovirus and betasatellite sequences, ToF3B2 was 93.5 % identical to Tomato leaf curl Togo virus, ToF3B17 was 95 % identical to Tomato leaf curl Cameroon virus and SatBToF3 was 92 % identical to Ageratum leaf curl Cameroon betasatellite (ALCCMB), respectively. The identification of ALCCMB in Ageratum and now in tomato strongly suggests Ageratum may be an alternative host to these viruses and that ALCCMB is non host specific and may cause severe diseases when transmitted to other crops.


Assuntos
Begomovirus/genética , Begomovirus/isolamento & purificação , Doenças das Plantas/virologia , Vírus Satélites/isolamento & purificação , Solanum lycopersicum/virologia , Ageratum/virologia , Sequência de Bases , Begomovirus/classificação , Begomovirus/fisiologia , Camarões , Coinfecção/virologia , Genoma Viral , Especificidade de Hospedeiro , Dados de Sequência Molecular , Filogenia , Vírus Satélites/classificação , Vírus Satélites/genética , Vírus Satélites/fisiologia
19.
J Virol ; 88(12): 7093-104, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24719407

RESUMO

UNLABELLED: In contrast to begomoviruses, mastreviruses have not previously been shown to interact with satellites. This study reports the first identification of the association of satellites with a mastrevirus in field-grown plants. Two alphasatellite species were detected in different field samples of wheat infected with Wheat Dwarf India Virus (WDIV), a Cotton leaf curl Multan alphasatellite (CLCuMA) and a Guar leaf curl alphasatellite (GLCuA). In addition to the alphasatellites, a betasatellite, Ageratum yellow leaf curl betasatellite (AYLCB), was also identified in the wheat samples. No begomovirus was detected in the wheat samples, thus establishing association of the above-named satellites with WDIV. Agrobacterium-mediated inoculation of WDIV in wheat, in the presence of either of the alphasatellites or the betasatellite, resulted in infections inducing more severe symptoms. WDIV efficiently maintained each of the alphasatellites and the betasatellite in wheat. The satellites enhanced the level of WDIV DNA in wheat. Inoculation of the satellites isolated from wheat with various begomoviruses into Nicotiana tabacum demonstrated that these remain capable of interacting with the viruses with which they were first identified. Virus-specific small RNAs accumulated in wheat upon infection with WDIV but were lower in abundance in plants coinfected with the satellites, suggesting that both the alphasatellites and the betasatellite suppress RNA silencing. These results suggest that the selective advantage for the maintenance of the alphasatellites and the betasatellite by WDIV in the field is in overcoming RNA silencing-mediated host defense. IMPORTANCE: Wheat is the most widely cultivated cereal crop in the world. A number of viruses are important pathogens of wheat, including the viruses of the genus Mastrevirus, family Geminiviridae. This study reports the association of subgenomic components, called satellites (alpha- and betasatellites), with a mastrevirus, Wheat Dwarf India Virus (WDIV), isolated from two distant locations in India. This study reports the first identification of the satellites in a monocot plant. The satellites enhanced accumulation of WDIV and severity of disease symptoms. The satellites lowered the concentration of virus-specific small RNAs in wheat plants, indicating their silencing suppressor activity. The involvement of the satellites in symptom severity of the mastrevirus can have implications in the form of economic impact of the virus on crop yield. Understanding the role of the satellites in disease severity is important for developing disease management strategies.


Assuntos
Geminiviridae/fisiologia , Doenças das Plantas/virologia , Vírus Satélites/fisiologia , Triticum/virologia , Sequência de Bases , DNA Viral/química , DNA Viral/genética , Geminiviridae/genética , Geminiviridae/isolamento & purificação , Dados de Sequência Molecular , Vírus Satélites/genética , Vírus Satélites/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência de DNA , Proteínas Virais/química , Proteínas Virais/genética
20.
PLoS One ; 9(4): e94923, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24747414

RESUMO

Virophages, which are potentially important ecological regulators, have been discovered in association with members of the order Megavirales. Sputnik virophages target the Mimiviridae, Mavirus was identified with the Cafeteria roenbergensis virus, and virophage genomes reconstructed by metagenomic analyses may be associated with the Phycodnaviridae. Despite the fact that the Sputnik virophages were isolated with viruses belonging to group A of the Mimiviridae, they can grow in amoebae infected by Mimiviridae from groups A, B or C. In this study we describe Zamilon, the first virophage isolated with a member of group C of the Mimiviridae family. By co-culturing amoebae with purified Zamilon, we found that the virophage is able to multiply with members of groups B and C of the Mimiviridae family but not with viruses from group A. Zamilon has a 17,276 bp DNA genome that potentially encodes 20 genes. Most of these genes are closely related to genes from the Sputnik virophage, yet two are more related to Megavirus chiliensis genes, a group B Mimiviridae, and one to Moumouvirus monve transpoviron.


Assuntos
Bacteriófagos/fisiologia , Especificidade de Hospedeiro , Mimiviridae , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/isolamento & purificação , Genoma Viral/genética , Vírus Satélites/genética , Vírus Satélites/crescimento & desenvolvimento , Vírus Satélites/isolamento & purificação , Vírus Satélites/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...